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Have you recently sent or received a picture of a friend by email or cell phone? Or perhaps you plan on watching a DVD 
with friends tonight. The pictures you will see are digital images, which are made up of pixels. For a black-and-white 
image, each pixel has a value representing the gray-level intensity. If we replace each pixel in the image with its value, 

a number, we get a rectangular array that looks like this:
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This array is called a matrix. By multiplying each entry by 3, we would increase the contrast. Other matrix operations 
(Section 8.2) can be applied to alter the image in other ways. The chapter project explores some possibilities.

The material on matrices and determinants presented in this chapter serves as an introduction to linear algebra, a 
mathematical subject that is used in the natural sciences, business and economics, and the social sciences. Since methods 
involving matrices may require millions of numerical computations, computers have played an important role in expanding the 
use of matrix techniques to a wide variety of practical problems.

Our study of matrices and determinants will focus on their application to the solution of systems of linear equations. We will see 
that the method of Gaussian Elimination, studied in the previous chapter, can be readily implemented using matrices. We will show that 
matrix notation provides a convenient means for writing linear systems and that the inverse of a matrix enables us to solve such a sys-
tem. Determinants will also provide us with an additional technique, known as Cramer’s Rule, for the solution of certain linear systems.

It should be emphasized that this material is a very brief introduction to matrices and determinants. Their properties and 
applications are both extensive and important.

Explore some different topics like this and others on the Mathematical Association of America website: http://www.maa.
org/press/periodicals. There you will find many uses of different concepts in mathematics.
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8.1	 Matrices and Linear Systems
8.1a	 Definitions
We have already studied several methods for solving a linear system, such as

2x + 3y = -7

	 3x -	 y =  17

This system can be displayed by a matrix, which is a rectangular array of mn real 
numbers arranged in m horizontal rows and n vertical columns. The numbers are 
called the entries, or elements, of the matrix and are enclosed within brackets. Thus,

A = 
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-
; E!!  rows

	 -	 -	-
	 columns

is a matrix consisting of two rows and three columns, whose entries are obtained 
from the two given equations. In general, a matrix of m rows and n columns is said 
to be of dimension m by n, written m × n. The matrix A is seen to be of dimension 
2 × 3. If the numbers of rows and columns of a matrix are both equal to n, the 
matrix is called a square matrix of order n.

Example 1  Dimension of a Matrix

a.  A = 
1
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is a 2 × 2 matrix. Since matrix A has two rows and two columns, it is a square 
matrix of order 2.

b.  B = 
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has three rows and two columns and is a 3 × 2 matrix.

c.  C = [-8  6  1]

is a 1 × 3 matrix and is called a row matrix since it has precisely one row.

d.  D = 
2
4-

; E

is a 2 × 1 matrix and is called a column matrix since it has exactly one column.	 ¢

http://www.maa.org/press/
periodicals
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8.1b	 Subscript Notation
There is a convenient way of denoting a general m × n matrix, using “double 
subscripts.”
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! first row

! second row

! ith row

! mth row

	 -	 -	 -	 -
	 first	 second	 jth	 nth
	 column	column	 column	 column

Thus, aij is the entry in the ith row and jth column of the matrix A. It is customary 
to write A = [aij] to indicate that aij is the entry in row i and column j of matrix A.

Example 2  Matrix Dimension and Element Notation

Let
A = 
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Matrix A is of dimension 3 × 4. The element a12 is found in the first row and 
second column and is seen to be -2. Similarly, we see that a31 = -3, a33 = -4 and 
a34 = 8.	 ¢

 Progress Check

Let

B = 

4
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Find the following:

a.  b11	 b.  b23	 c.  b31	 d.  b42

Answers

a.  4	 b.  3	 c.  -8	 d.  1
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8.1c	 Coefficient and Augmented Matrices
If we begin with the system of linear equations

2x + 3y = -7

	 3x -	 y = 17

the matrix
2
3

3
1-

; E
in which the first column is formed from the coefficients of x and the second col-
umn is formed from the coefficients of y, is called the coefficient matrix. The matrix

2
3

3
1-

;  
⋮
⋮

7
17
- E

which includes the column consisting of the right-hand sides of the equations 
separated by a dashed line, is called the augmented matrix. Note that the unknowns 
should always be aligned when forming the coefficient and augmented matrices.

Example 3  Linear Systems and the Augmented Matrix

Write a system of linear equations that corresponds to the augmented matrix.
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SOLUTION
We attach the unknown x to the first column, the unknown y to the second col-
umn, and the unknown z to the third column. The resulting system is

-5x + 2y - z = 15

	 - 2y + z = -7

	 x2
1  +	 y - z =	 3	 ¢

Now that we have seen how a matrix can be used to represent a system of lin-
ear equations, we next proceed to show how operations on that matrix can yield 
the solution of the system. These “matrix methods” are simply a streamlining of 
the methods already studied in the previous chapter.

In Section 7.3, we used three elementary operations to transform a system of 
linear equations into triangular form. When applying the same procedures to a 
matrix, we speak of rows, columns, and elements instead of equations, unknowns, 
and coefficients. The three elementary operations that yield an equivalent system 
now become the elementary row operations.

Elementary Row Operations
The following elementary row operations transform an augmented matrix 
into another augmented matrix. These augmented matrices correspond to 
equivalent linear systems.

1.	 Interchange any two rows.
2.	 Multiply each element of any row by a constant k ! 0.
3.	 Replace each element of a given row by the sum of itself plus k times 

the corresponding element of any other row.
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The method of Gaussian Elimination, introduced in Section 7.3, can now be re-
stated in terms of matrices. By use of elementary row operations we seek to trans-
form an augmented matrix into a matrix for which aij = 0 when i > j. The resulting 
matrix has the following appearance for a system of three linear equations in three 
unknowns:
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Since this matrix represents a linear system in triangular form, back-substitution pro-
vides a solution of the original system. We will illustrate the process with an example.

Example 4  Elementary Row Operations and Gaussian Elimination

Solve the system.
	 x -	 y + 4z =	 4
	 2x + 2y -	 z =	 2

3x - 2y + 3z = -3

SOLUTION
We describe and illustrate the steps of the procedure.

Step 1.  Form the augmented matrix. Step 1.  The augmented matrix is
1
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Step 2. � If necessary, interchange rows to make sure that a11, 
the first element of the first row, is nonzero. We call 
a11 the pivot element and row 1 the pivot row.

Step 2. � We see that a11 = 1 ! 0. The pivot element is a11 and 
is shown in blue.

Step 3. � Arrange to have 0 as the first element of every row 
below row 1. This is done by replacing row 2, row 
3, and so on by the sum of itself and an appropriate 
multiple of row 1.

Step 3. � To make a21 = 0, replace row 2 by the sum of itself 
and (-2) times row 1. To make a31 = 0, replace row 3 
by the sum of itself and (-3) times row 1.
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Step 4. � Repeat the process defined by Steps 2 and 3, allow-
ing row 2, row 3, and so on to play the role of the 
first row. Thus, row 2, row 3, and so on serve as the 
pivot rows, with a22 the pivot element of row 2, a33, 
the pivot element of row 3, and so on.

Step 4. � Since a22 = 4 ! 0, it serves as the next pivot element 
and is shown in blue. To make a32 = 0, replace row 3 
by the sum of itself and 4

1-_ i times row 2.
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Step 5. � The corresponding linear system is in triangular 
form. Solve by back-substitution.

Step 5. � The third row of the final matrix yields

z4
27-  = 2

27-

	 z = 2
Substituting z = 2, we obtain from the second row of the 
final matrix
	 4y - 9z = -6

4y - 9(2) = -6
	 y = 3
Substituting y = 3 and z = 2, we obtain from the first row of 
the final matrix
	 x - y + 4z = 4

x - 3 + 4(2) = 4
	 x = -1
The solution is x = -1, y = 3, z = 2.

	 ¢
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 Progress Check

Solve the linear system by matrix methods.
	 2x + 4y -	 z =	 0

	 x - 2y - 2z =	 2
-5x - 8y + 3z = -2

Answer
x = 6, y = -2, z = 4

Note that we described the process of Gaussian Elimination in a manner that 
applies to any augmented matrix that is n × (n + 1). Thus, Gaussian Elimination 
may be used on any system of n linear equations in n unknowns that has a unique 
solution.

It is also permissible to perform elementary row operations in ways to simplify 
the arithmetic. For example, you may wish to interchange rows or multiply a row 
by a constant to obtain a pivot element equal to 1. We will illustrate these ideas 
with an example.

Example 5  Elementary Row Operations and Gaussian Elimination

Solve by matrix methods.

	 2y + 3z	 =	 4
	 4x +	 y + 8z + 15w = -14
	 x -	 y + 2z	 =	 9
	 -x -	2y - 3z -	 6w =	 10

SOLUTION
We begin with the augmented matrix and perform a sequence of elementary row 
operations. The pivot element is shown in blue.

Write the augmented matrix. Note that 
a11 = 0.
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Interchange rows 1 and 3 so that a11 = 1.
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To make a21 = 0, replace row 2 by the 
sum of itself and (-4) times row 1. To 
make a41 = 0, replace row 4 by the sum 
of itself and row 1.
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Multiply row 2 by 5
1  so that a22 = 1.
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To make a32 = 0, replace row 3 by the 
sum of itself and (-2) times row 2. To 
make a42 = 0, replace row 4 by the sum 
of itself and 3 times row 2.
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Interchange rows 3 and 4 so that the 
next pivot is a33 = -1. 1
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To make a43 = 0, replace row 4 by the 
sum of itself and 3 times row 3.
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The last row of the matrix indicates that

3w = -9
	 w = -3

The remaining unknowns are found by back-substitution.

Third Row of Final Matrix Second Row of Final Matrix First Row of Final Matrix

	 -z + 3w = -11 	 y + 3w = -10 	 x - y + 2z = 9

-z + 3(-3) = -11 y + 3(-3) = -10 x - (-1) + 2(2) = 9

	 z = 2 	 y = -1 	 x = 4

The solution is x = 4, y = -1, z = 2, w = -3.	 ¢

8.1d	 Gauss-Jordan Elimination
There is an important variant of Gaussian Elimination known as Gauss-Jordan Elimi‑
nation. The objective of this variant is to transform a linear system into a form that 
yields a solution without back-substitution. For a 3 × 3 system that has a unique 
solution, the final matrix and equivalent linear system look like this:

1
0
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0
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1
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  x + 0y + 0z = c1

	 0x +	 y + 0z = c2

	 0x + 0y +	 z = c3

The solution is then seen to be x = c1, y = c2 and z = c3.
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The execution of the Gauss-Jordan Method is essentially the same as that of 
Gaussian Elimination with these exceptions:
1.	 The pivot elements are always required to be equal to 1.
2.	 All elements in a column other than the pivot element are forced to be 0.
These objectives are accomplished by the use of elementary row operations as il-
lustrated in the following example.

Example 6  Gauss-Jordan Elimination

Solve the linear system by the Gauss-Jordan Method.
	 x - 3y + 2z = 12

	 2x +	 y - 4z = -1
	 x + 3y - 2z = -8

SOLUTION
We begin with the augmented matrix. At each stage, the pivot element is shown 
in blue and is used to force all elements in that column other than the pivot ele-
ment itself to be zero.

The pivot element is a11.
1
2
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3
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To make a21 = 0, replace row 2 by the 
sum of itself and -2 times row 1. To 
make a31 = 0, replace row 3 by the sum 
of itself and -1 times row 1.
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Replace row 2 by the sum of itself and 
-1 times row 3 to yield the next pivot, 
a22 = 1.

1
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To make a12 = 0, replace row 1 by the 
sum of itself and 3 times row 2. To make 
a32 = 0, replace row 3 by the sum of itself 
and -6 times row 2.
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Multiply row 3 by 20
1  so that a33 = 1.

1

1
0
0

0
1
0

10
4

-
-

-
R

T

SSSSSSSS
 
⋮
⋮
⋮

3
5

1 2
1

-
-

-

V

X

WWWWWWWWW

To make a13 = 0, replace row 1 by the 
sum of itself and 10 times row 3. To make 
a23 = 0, replace row 2 by the sum of itself 
and 4 times row 3.

1
0
0

0
1
0

0
0
1
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-
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We see the solution directly from the final matrix: x = 2, y = -3, and z = 2
1 .	 ¢
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Graphing Calculator Power User’s  CORNER
Reduced Row Echelon Form
Your graphing calculator can take an augmented matrix and return the re-
duced row echelon form required by Gauss-Jordan Elimination. As you will 

see in Example 7, the dashed line customarily found in an augmented matrix does not appear. Your 
graphing calculator is a powerful tool for solving systems of equations. However, you must be able 
to interpret the information it gives you. Recall the cases in which there are either infinitely many 
solutions, or no solution.

Example 7  Gauss-Jordan Elimination Using the Graphing Calculator

Consider the system

	 0.03x +	 y - 0.07z = 0.89
x - 0.01y + 0.12z = 1.23

	 1.02x - 1.02y +	 z = 2

The augmented matrix for this system is

.

.
.
.

.

.
.
.

0 03
1
1 02

1
0 01
1 02

0 07
0 12
1

0 89
1 23
2

-
-
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X
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After entering this matrix into the graphing calculator and naming it A, we select 
reduced row echelon form from the MATRIX MATH menu:

NAMES          MATH        EDIT
6: - r and M(
7: augment(
8: Matr

T

 list(
9: List

T

matr(
0: cumSum(
A: ref(
B: rref(

Here is the result:

rref([A])
 [[1 0 0 1]
 [0 1 0 1]
 [0 0 1 2]]

The solution is (1, 1, 2).	 ¢
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Exercise Set 8.1   
In Exercises 1–6, state the dimension of each matrix.

1.	
3
2

1
4

-; E	 2.  [1  2  3  -1]

3.	

4
5
2
8

2
1
3
1

3
4
6
2-

-

-

R

T

SSSSSSSSSS

V

X

WWWWWWWWWW

	 4. 
1
3
2
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V

X
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5.	
4
3
4

2
1

1
5
32- -

R

T

SSSSSSS

V

X

WWWWWWW
	 6. 

3
2

1
8

2 6
14

-; E

7.	 Given

A = 
3
8
1

4
7
0

2
6
9

5
2
3

- -

-

R

T

SSSSSSS

V

X

WWWWWWW

find

a.	 a12  b.  a22  c.  a23  d.  a34

8.	 Given

B = 

5
4
0
3

6
1
2
9

8
3
6
7

-

-
-

R

T

SSSSSSSSSS

V

X

WWWWWWWWWW

find

a.	 b13  b.  b21  c.  b33  d.  b42

In Exercises 9–12, write the coefficient matrix and 
the augmented matrix for each given linear system.

9.	 3x - 2y = 12	 10.  3x - 4y = 15
5x +	 y = -8	 4x - 3y = 12

11.	 x2
1  +	 y +	 z = 4	 12.  2x + 3y - 4z = 10

2x -	 y - 4z = 6	 -3x +	 y	 = 12
4x + 2y - 3z = 8	 5x - 2y +	 z = -8

In Exercises 13–16, write the linear system whose 
augmented matrix is given.

13.	
4

6
5

2
3

<  
⋮
⋮

1
3

- F	 14. 
4
7

0
8-

;  
⋮
⋮

2
3
E

15.	
1
3
2

1
4
0

3
0
7

-

R

T

SSSSSSS
 
⋮
⋮
⋮

4
8
6

-
V

X

WWWWWWWW
	 16. 

4
1
0

8
5
2

3
3
7

-

R

T
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⋮
⋮
⋮
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14
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-

V

X

WWWWWWWW

In Exercises 17–20, the augmented matrix corre-
sponding to a linear system has been transformed 
to the given matrix by elementary row operations. 
Find a solution of the original linear system.

17.	
1
0
0

2
1
0

0
2
1

-
-R

T
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⋮
⋮
⋮

3
4
2

-
V
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	 18. 

1
0
0

0
1
0

2
3
1

-R

T
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⋮
⋮
⋮

1
2
5

-
V

X
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19.	
1
0
0

2
1
0

1
3
1

- -R
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⋮
⋮

3
2
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V
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	 20. 

1
0
0

4
1
0

2
3
1
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⋮
⋮

4
2
5

-
-

V

X

WWWWWWWW

In Exercises 21–30, solve the given linear system by 
applying Gaussian Elimination to the augmented 
matrix.

21.	 	 x - 2y = -4	 22.  2x + y = -1
2x + 3y = 13	 3x - y = -7

23.	 	 x +	 y +	 z =	 4	 24.	 x - y +	 z = -5
2x -	 y + 2z = 11	 3x + y + 2z = -5
	 x + 2y + 2z =	 6	 2x - y -	 z = -2

25.	 2x +	 y -	 z =	 9	 26.	 2x +	 y -	 z = -2
	 x - 2y + 2z = -3	 -2x - 2y + 3z =	 2
3x + 3y + 4z = 11	 3x +	 y -	 z = -4

27.	 -x -	 y + 2z =	 9	 28.  4x +	 y -	 z = -1
	 x + 2y - 2z = -7	 x -	 y + 2z =	 3
2x -	 y +	 z = -9	 -x + 2y -	 z =	 0

29.	 	 x +	 y -	 z + 2w	=	 0
2x +	 y	 -	 w = -2
3x	 + 2z	 = -3
-x + 2y	 + 3w =	 1

30.	 	 2x +	 y	 - 3w = -7
	 3x	 + 2z +	 w =	 0
	 -x + 2y	 + 3w = 10
-2x - 3y + 2z -	 w =	 7

In Exercises 31–40, solve the linear systems of 
Exercises 21–30 by Gauss-Jordan Elimination ap-
plied to the augmented matrix.

In Exercises 41–50, solve the linear systems of 
Exercises 21–30 in your graphing calculator by us-
ing the reduced row echelon option under your 
MATRIX menu.

51.	 A black-and-white digital image has 30 rows 
of 18 pixels each. If the image is represented 
as a matrix with each entry the value of the 
corresponding pixel, what are the dimensions 
of the matrix?

52.	 Mathematics in Writing: In your own words, de-
scribe the difference between Gaussian elimi-
nation and Gauss-Jordan elimination. Which 
do you prefer? Why?
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8.2	 Matrix Operations and Applications
Now that we have defined a matrix, we can define various operations with matri-
ces. First we begin with the definition of equality.

Equality of Matrices 
Two matrices are equal if they are of the same dimension and their cor-
responding entries are equal.

Example 1  Matrix Equality

Solve for all unknowns.

y
x

s
2
1

2
3

9
4

-
- -

< F  = 
z

r4
6 9

7-
; E

SOLUTION
Equating corresponding elements, we must have

	 -2 = z	 or	 z = -2
	 2x = 6	 or	 x = 3

y - 1 = -4  or  y = -3
	 3 = r	 or	 r = 3

	 -4s = 7	 or	 s = 4
7- 	 ¢

Matrix addition can be performed only when the matrices are of the same 
dimension.

Matrix Addition
The sum A + B of two m × n matrices A and B is the m × n matrix obtained 
by adding the corresponding elements of A and B.

Example 2  Matrix Addition

Given the following matrices,

	 A = [2  -3  4]          B = [5  3  2]

	 C = 
1
2

6
4

1
5-

-; E	 D = 
16
4

2
7

9
1- -

; E
find (if possible):

a.  A + B	 b.  A + D	 c.  C + D

SOLUTION
a.  Since A and B are both 1 × 3 matrices, they can be added, giving

A + B = [2 + 5    -3 + 3    4 + 2] = [7  0  6]

b.  Matrices A and D are not of the same dimension and cannot be added.

c.  C and D are both 2 × 3 matrices. Thus,

	 C + D = 
1 16
2 4

6 2
4 7

1 9
5 1

+
- +

+
+ -

- +
+ -^ ^h h< F = 

17
2

8
3

8
4-

; E	 ¢
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A matrix is a way of writing the information displayed in a table. For example, 
Table 8-1 displays the current inventory of the Quality TV Company at its various 
outlets.

Table 8-1  Inventory of Television Sets

TV Sets Boston Miami Chicago

17 inch 140 84 25

19 inch 62 17 48

The same data is displayed by the matrix S, where we understand the columns to 
represent the cities and the rows to represent the sizes of the television sets.

S = 
140
62

84
17

25
48

; E

If the matrix

	 M = 
30
50

46
25

15
60

1; E

specifies the number of sets of each size received at each outlet the following 
month, then the matrix

T = S + M = 
170
112

130
42

40
108

; E
gives the revised inventory.

Suppose the salespeople at each outlet are told that half of the revised inven-
tory is to be placed on sale. To determine the number of sets of each size to be 
placed on sale, we need to multiply each element of the matrix T by 0.5. When 
working with matrices, we call a real number such as 0.5 a scalar and define scalar 
multiplication as follows. 

Scalar Multiplication
To multiply a matrix A by a scalar c, multiply each entry of A by c.

Example 3  Scalar Multiplication

The matrix Q
	 Regular	 Unleaded	 Premium

Q = 
130
110

250
180

60
40

; E
 

City A
City B

shows the quantity (in thousands of gallons) of the principal types of gasolines 
stored by a refiner at two different locations. It is decided to increase the quantity 
of each type of gasoline stored at each site by 10%. Use scalar multiplication to 
determine the desired inventory levels.

SOLUTION
To increase each entry of matrix Q by 10%, we compute the scalar product 1.1Q.

	 1.1Q = 1.1 
130
110

250
180

60
40

; E = 
.
.

.

.
.
.

1 1 130
1 1 110

1 1 250
1 1 180

1 1 60
1 1 40

^
^

^
^

^
^

h
h

h
h

h
h< F = 

143
121

275
198

66
44

; E	 ¢
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We denote A + (-1)B by A - B and refer to this as the difference of A and B.

Matrix Subtraction
The difference A - B of two m × n matrices A and B is the m × n matrix ob-
tained by subtracting each entry of B from the corresponding entry of A.

Example 4  Matrix Subtraction

Using the matrices C and D of Example 2, find C - D.

SOLUTION
By definition,

	 C - D = 
1 16
2 4

6 2
4 7

1 9
5 1

-
- -

-
- -

- -
- -^ ^h h< F = 

15
6

4
11

10
6

-
-

-; E	 ¢

8.2a	 Matrix Multiplication
We will use the Quality TV Company again, this time to help us arrive at a defini-
tion of matrix multiplication. Suppose
	 Boston	 Miami	 Chicago

B = 
60
40

85
100

70
20

; E
 

17 inch
19 inch

is a matrix representing the number of television sets in stock at the end of the 
year. Further, suppose the cost of each 17-inch set is $80 and the cost of each 19-
inch set is $125. To find the total cost of the inventory at each outlet, we multiply 
the number of 17-inch sets by $80, the number of 19-inch sets by $125, and add 
the two products. If we let

A = [80  125]

be the cost matrix, we seek to define the product

AB = [80  125] 
60
40

85
100

70
20

; E

so that the result is a matrix displaying the total inventory cost at each outlet. We 
need to calculate for

	 the Boston outlet	 (80)(60) + (125)(40) = 9800

	 the Miami outlet	 (80)(85) + (125)(100) = 19,300

the Chicago outlet    (80)(70) + (125)(20) = 8100

The total inventory cost at each outlet can then be displayed by the 1 × 3 matrix

C = [9800  19,300  8100]

which is the product of A and B.  Thus,

	 AB = [80  125] 
60
40

85
100

70
20

; E

	 = [(80)(60) + (125)(40)  (80)(85) + (125)(100)  (80)(70) + (125)(20)]

	 = [9800  19,300  8100] = C
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This example illustrates the process for multiplying a 1 × 2 matrix times a 2 × 3 
matrix. The general definition of matrix multiplication utilizes the same basic 
idea. That is, multiplication of matrices requires calculating sums of products. In 
this example, the first matrix had two columns and the second matrix had two 
rows. If we denote the elements of the first matrix as

A = [a11  a12]

and the elements of the second matrix as

B = 
b
b

b
b

b
b

11

21

12

22

13

23
= G

then matrix multiplication requires that we calculate

[a11b11 + a12b21  a11b12 + a12b22  a11b13 + a12b23]

If we denote the elements of this product by

C = [c11  c12  c13]

then we see that

c1k = a11b1k + a12b2k    for k = 1, 2, 3

Matrix Multiplication
The product of AB of m × n matrix A = [aij] and the n × r matrix B = [bjk] is 
obtained by forming the m × r matrix C = [cik], where

cik = ai1b1k + ai2b2k + g + ainbnk

for i = 1, 2, …, m and k = 1, 2, …, r.

It is important to note that the product AB only exists if the number of col-
umns of A equals the number of rows of B. See Figure 8-1.

	

A
n × r

B
m × n

Dimension of the product AB

To form the matrix product AB,
these must be equal.

Example 5  Matrix Multiplication

Find the product AB if

A = 
2
3

1
5

; E      B = 
4
2

6
0

2
1

4
5

- -
-

; E

SOLUTION

AB = 
2 4 1 2
3 4 5 2

2 6 1 0
3 6 5 0

2 2 1 1
3 2 5 1

2 4 1 5
3 4 5 5

+
+

- +
- +

- +
- +

+ -
+ -

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h< F

	 = 
10
22

12
18

3
1

3
13

-
-

-
- -

; E	 ¢

Figure 8-1 

Dimension of the  
Product Matrix
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 Progress Check

Find the product AB if

A = 
2
4

1
3

2
1

- -; E      B = 
5
3
1

4
1
0-

-R

T

SSSSSSS

V

X

WWWWWWW

Answer

AB = 
15
28

7
13

-
-

; E

Example 6  Matrix Multiplication

Given the matrices

A = 
1
2

1
3

-; E  B = 
5
2

3
2-

-; E  C = 
3
1

1
0

2
4

- -; E  D = 
1
2
3

R

T

SSSSSSS

V

X

WWWWWWW

a.  Show that AB ! BA.

b.  Determine the dimension of CD.

SOLUTION

a.  AB = 
1 5 1 2
2 5 3 2

1 3 1 2
2 3 3 2

+ - -
+ -

- + -
- +

^
^

^
^

^
^ ^

^ ^
^

^
^

^
^ ^

^h
h

h
h h

h
h
h h

h
h
h h

h
h
h< F = 

7
4

5
01

--
-

; E

BA = 
5 1 3 2

2 1 2 2
5 1 3 3

2 1 2 3
+ -

- +
- + -

- - +
^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

h
h
h
h

h
h

h
h

h
h

h
h

h
h

h
h< F = 

1
2

14
8

- -; E

Since the corresponding elements of AB and BA are not equal, AB ! BA.

b.  The product of a 2 × 3 matrix and a 3 × 1 matrix is a 2 × 1 matrix.	 ¢

 Progress Check

If possible, find the dimension of CD and of CB, using the matrices of 
Example 6.

Answers
2 × 1; not defined

We saw in Example 6 that AB ! BA; that is, the commutative law does not 
hold for matrix multiplication. However, the associative law A(BC) = (AB)C does 
hold when the dimensions of A, B, and C permit us to find the necessary products.

 Progress Check

Verify that A(BC) = (AB)C for the matrices of A, B, and C of Example 6.
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8.2b	 Matrices and Linear Systems
Matrix multiplication provides a convenient shorthand for writing a linear sys-
tem. For example, the linear system

	 2x -	 y - 2z =	 3
	 3x + 2y +	 z = -1
	 x +	 y - 3z = 14

can be expressed as

AX = B

where

A = 
2
3
1

1
2
1

2
1
3

- -

-

R

T

SSSSSSS

V

X

WWWWWWW
      X = 

x
y
z
> H      B = 

3
1

14
-

R

T

SSSSSSS

V

X

WWWWWWW

To verify this, form the matrix product AX and then apply the definition of matrix 
equality to the matrix equation AX = B.

Example 7  Matrices and Linear Systems

Write the linear system AX = B if

A = 
2
1

3
4

-; E  X = 
x
y
; E  B = 

16
3-

; E

SOLUTION
Equating corresponding elements of the matrix equation AX = B yields

-2x + 3y = 16
	 x + 4y = -3	 ¢
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Exercise Set 8.2   
1.	 For what values of a, b, c, and d are the matri-

ces A and B equal?

A = 
a b
6 2-
; E    B = c d

3 4-; E

2.	 For what values of a, b, c, and d are the matri-
ces A and B equal?

A = 
a b

a
c

c d
2+
-

; E    B = 
1
5

6
10

-; E

In Exercises 3–18, the following matrices are given:

A = 
2
3

3
4

1
1-

- -; E	 B = 
2
3
4

1
2
1

--R

T

SSSSSSS

V

X

WWWWWWW

C = 
1
4
3

2
1
2

3
2
5

-
- -R

T

SSSSSSS

V

X

WWWWWWW
	 D = 

3
4

2
1

- -; E 

 E = 
1
3
1

3
2
1

2
4
2

-- -R

T

SSSSSSS

V

X

WWWWWWW
	 F = 

1
2

3
4-

-; E

G = 
2
1

4
0

2
3

- - -; E

In Exercises 3–18, if possible, compute the indicat-
ed matrix.

3.	 C + E	 4.  C - E

5.	 2A + 3G	 6.  3G - 4A

7.	 A + F	 8.  2B - D

9.	 AB	 10.  BA

11.	 CB + D	 12.  EB - FA

13.	 DF + AB	 14.  AC + 2DG

15.	 DA + EB	 16.  FG + B

17.	 2GE - 3A	 18.  AB + FG

19.	 If

A = 
2
2

3
3

-
-

; E	 B = 
1
2

3
0

-; E

C = 
4
0

3
4

- -
-

; E 
show that AB = AC.

20.	 If

A = 
1
3

2
2

- -; E    and    B = 
2
3

1
4-

-; E
show that AB ! BA.

21.	 If

A = 
2
2

3
3

-
-

; E    and    B = 
3
2

6
4

- -; E

show that

AB = 
0
0

0
0

-
-

; E

22.	 If

A = 
0
1

1
0

; E
show that

A · A = 
1
0

0
1

; E
23.	 If

I = 
1
0
0

0
1
0

0
0
1

R

T

SSSSSSS

V

X

WWWWWWW
  and  A = 

a
a
a

a
a
a

a
a
a

11

21

31

12

22

32

13

23

33

R

T

SSSSSSS

V

X

WWWWWWW

show that AI = A and IA = A.

24.	 Pesticides are sprayed on plants to eliminate 
harmful insects. However, some of the pesti-
cide is absorbed by the plant, and the pesti-
cide is then absorbed by herbivores (plant-eat-
ing animals, such as cows) when they eat the 
plants that have been sprayed. Suppose that 
we have three pesticides and four plants, and 
that the amounts of pesticide absorbed by the 
different plants are given by the matrix

	 Plant 1	Plant 2	 Plant 3	 Plant 4

A = 
3
6
4

2
5
3

4
2
1

3
4
5

R

T

SSSSSSS

V

X

WWWWWWW 

Pesticide 1
Pesticide 2
Pesticide 3	

where aij denotes the amount of pesticide i in 
milligrams that has been absorbed by plant j. 
Thus, plant 4 has absorbed 5 milligrams of pes-
ticide 3. Now suppose that we have three herbi-
vores and that the numbers of plants eaten by 
these animals are given by the matrix

	Herbivore 1	 Herbivore 2	 Herbivore 3

B = 

18
12
16
6

30
15
12
4

20
10
8

12

R

T

SSSSSSSSSS

V

X

WWWWWWWWWW 

Plant 1
Plant 2
Plant 3
Plant 4

How much of pesticide 2 has been absorbed by 
herbivore 3?

25.	 What does entry a23 in the matrix product AB 
of Exercise 24 represent?

In Exercises 26–29, find the matrices A, X, and B so 
that the matrix equation AX = B is equivalent to 
the given linear system.

26.	 	 7x - 2y =	 6	 27.  3x + 4y = -3
-2x + 3y = -2	 3x -	 y =	 5

28.	 5x + 2y - 3z =	 4	 29.  3x -	 y + 4z =	 5

2x - y2
1  +	z = 10	 2x + 2y + z4

3  = -1

	 x +	 y - 5z = -3		 x - y4
1  +	 z =	 2

1
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In Exercises 30–33, write the linear system that is 
represented by the matrix equation AX = B.

30.	 A = 
2
3

1
4-

-; E	 X = 
x
y
; E	 B = 

2
10
-; E

31.	 A = 
1
4

5
3

--; E	 X = 
x
x

1

2
< F	 B = 

0
2

-; E

32.	 A = 
1
3
4

7
6
2

2
1
0-

-R

T

SSSSSSS

V

X

WWWWWWW
	 X = 

x
y
z

> H	 B = 
3
3
2

-

R

T

SSSSSSS

V

X

WWWWWWW

33.	 A = 
4
0
0

5
3
0

2
1
2

-
-

-R

T

SSSSSSS

V

X

WWWWWWW
	 X = 

x
x
x

1

2

3

R

T

SSSSSSS

V

X

WWWWWWW
	 B = 

2
5
4

-

R

T

SSSSSSS

V

X

WWWWWWW

34.	 The m × n matrix all of whose elements are 
zero is called the zero matrix and is denoted 
by 0. Show that A + 0 = A for every m × n 
matrix A.

35.	 The square matrix of order n, such that aij = 1 
and aij = 0 when i ! j, is called the identi‑
ty matrix of order n and is denoted by In. (Note: 
The definition indicates that the diagonal 
elements are all equal to 1 and all elements 
of the diagonal are 0.) Show that AIn = InA for 
every square matrix A of order n.

36.	 	The matrix B, each of whose entries is the 
negative of the corresponding entry of 
matrix A, is called the additive inverse of the 
matrix A. Show that A + B = 0 where 0 is the 
zero matrix. (See Exercise 34.)

37.	 A square black-and-white digital image with 
9 pixels may be represented as a matrix, like 
matrix A in Exercise 23. Suppose the image 
has 4 bits per pixel. Each bit has a value of 0 
or 1. Each entry in A must be an integer be-
tween 0 (darkest black) to 24 - 1, or 15 (whit-
est white). (Note: The integers from 0 to 15 
represent 16 possible values.)

Suppose A = 
0
5
7

4
0
2

6
1
3

R

T

SSSSSSS

V

X

WWWWWWW

The contrast is increased by multiplying each 
entry by a scaling factor. Find the matrix 2A, 
representing an image with increased contrast.

38.	 The digital negative image of an image is found 
by subtracting each element of the image ma-
trix from its maximum possible value. The i,j 
entry of the matrix N for the digital negative 
of A in Exercise 37 is

nij = 15 - aij

Find the matrix N.

39.	 We can add one image to another and repre-
sent the resulting image by the matrix sum of 
the image matrix for each. Find the matrix for 
the image that results from adding the im-
age represented by A to its negative N. De-
scribe the image qualitatively. What would it 
look like?
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8.3	 Inverses of Matrices 
If a ! 0, then the linear equation ax = b can be solved by multiplying both sides by 
the reciprocal of a. Thus, we obtain x = ba

1_ i . It would be nice if we could multiply 
both sides of the matrix equation AX = B by the “reciprocal of A.” Unfortunately, 
a matrix has no reciprocal. However, we shall discuss a notion that, for a square 
matrix, provides an analogue of the reciprocal of a real number and will enable 
us to solve the linear system in a manner distinct from the Gauss-Jordan Method 
discussed earlier in this chapter.

In this section we confine our attention to square matrices. The n × n matrix

In = 

1
0

0

0
1

0

0
0

0

0
0

1

$

$

$

$

$

$

$

$

$

$

$

$

g

g

g

g

g

g

R

T

SSSSSSSSSSSSSSSS

V

X

WWWWWWWWWWWWWWWW

that has 1 for each entry on the main diagonal and 0 elsewhere is called the identity 
matrix. Examples of identity matrices follow:

I2 = 
1
0

0
1

; E    I3 = 
1
0
0

0
1
0

0
0
1

R

T

SSSSSSS

V

X

WWWWWWW
    I4 = 

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

R

T

SSSSSSSSSS

V

X

WWWWWWWWWW

If A is any n × n matrix, we can show that

AIn = InA = A

(See Exercise 35, Section 8.2.) Thus, In is the matrix analogue of the real number 1.
An n × n matrix A is called invertible, or nonsingular, if we can find an n × n 

matrix B such that

AB = BA = In

The matrix B is called an inverse of A.

Example 1  Verifying Inverses

Show that A and B are inverses of one another where

A = 
2
3

1
2

; E    and    B = 
2
3

1
2-

-; E

SOLUTION
Since

AB = BA = 
1
0

0
1

; E

we conclude that A is an invertible matrix and that B is an inverse of A. (Verify the 
above equation.) Note that if B is an inverse of A, then A is an inverse of B.	 ¢

It can be shown that if an n × n matrix A has an inverse, it can have only one 
inverse. We denote the inverse of A by A-1. Thus, we have

AA-1 = In  and  A-1A = In
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Note that the products AA-1 and A-1A yield the identity matrix In, whereas the products 
aa-1 = a a

1_ i and a-1a = aa
1_ i  yield the identity element 1 for any real number a ! 0. For 

this reason, A-1 may be thought of as the matrix analogue of the reciprocal a
1 .

 Progress Check

Verify that the matrices

A = 
4
5

5
2

; E  and  B = 
1
1 2

2
5-

-
< F

are inverses of each other.

If a ! 0 is a real number, then a-1 has the property that aa-1 = a-1a = 1. Since 
a-1 = a

1 , we may refer to a-1 as the inverse, or reciprocal, of a. Although the ma-
trix A-1 is the inverse of the n × n matrix A, since AA-1 = A-1A = In, it cannot be 
referred to as the reciprocal of A, since matrix division is not defined.

We now develop a practical method for finding the inverse of an invertible 
matrix. Suppose we want to find the inverse of the matrix

A = 
1
2

3
5

; E
Let the inverse be denoted by

B = 
b
b

b
b

1

3

2

4
= G

Then we must have

	 AB = I2	 (1)

and

	 BA = I2	 (2)

Equation (1) now becomes
b
b

b
b

1
2

3
5

1

3

2

4
; =E G = 

1
0

0
1

; E
or b b

b b
b b
b b

3
2 5

3
2 5

1 3

1 3

2 4

2 4

+
+

+
+= G = 

1
0

0
1

; E

Since two matrices are equal if, and only if, their corresponding entries are equal, 
we have
	 b1 + 3b3 = 1

	 (3)
	 2b1 + 5b3 = 0

and
	 b2 + 3b4 = 0

	 (4)
	 2b2 + 5b4 = 1
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We solve the linear systems (3) and (4) by Gauss-Jordan Elimination. We begin 
with the augmented matrices of the linear systems and perform a sequence of 
elementary row operations as follows:

	 (3)	 (4)

Write the augmented matrices of (3) and 
(4). 	

1 3
52

-;  
⋮
⋮

1
0

- E
	

1
2

3
5

-;  
⋮
⋮

0
1-
E

To make a21 = 0, replace row 2 with the 
sum of itself and -2 times row 1. 	

1
0

3
1-

;  
⋮
⋮

1
2-
E	

1
0

3
1-

;  
⋮
⋮

0
1-
E

Multiply row 2 by -1 to obtain a22 = 1.
	

1
0

3
1

-;
 
⋮
⋮

1
2

- E
	

1
0

3
1

-;
 
⋮
⋮

0
1-
E

To make a12 = 0, replace row 1 with the 
sum of itself and -3 times row 2. 	

1
0

0
1

-;  
⋮
⋮

5
2

- E	
1
0

0
1

-;  
⋮
⋮

3
1-
E

Thus, b1 = -5 and b3 = 2 is the solution of (3), and b2 = 3 and b4 = -1 is the solu-
tion of (4). Check that

B = 
5
2

3
1

-
-

; E 

also satisfies the requirement BA = I2 of Equation (2).
Observe that the linear systems (3) and (4) have the same coefficient matrix 

(which is also the same as the original matrix A) and that an identical sequence of 
elementary row operations was performed in the Gauss-Jordan Elimination. This 
suggests that we can solve the systems at the same time. We write the coefficient 
matrix A and next to it list the right-hand sides of (3) and (4) to obtain the matrix

	
1
2

3
5

;  
⋮
⋮

1
0

0
1
E	 (5)

Note that the columns to the right of the dashed line in (5) form the identity ma-
trix I2. Performing the same sequence of elementary row operations on matrix (5) 
as we did on matrices (3) and (4) yields

	
1
0

0
1

;  
⋮
⋮

5
2

3
1

-
-

E	 (6)

Then A-1 is the matrix to the right of the dashed line in (6).
The procedure outlined for the 2 × 2 matrix A applies in general. Thus, we 

have the following method for finding the inverse of an invertible n × n matrix A.

Computing A-1

Step 1. � Form the n × 2n matrix [A⋮In] by adjoining the identity matrix In 
to the given matrix A.

Step 2. � Apply elementary row operations to the matrix [A⋮In] to trans-
form the matrix A to In.

Step 3.  The final matrix is of the form [In⋮B] where B is A-1.
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Example 2  Computing Inverses

Find the inverse of

A = 
1
2
1

2
5
1

3
7
1

R

T

SSSSSSS

V

X

WWWWWWW

SOLUTION
We form the 3 × 6 matrix [A⋮I3] and transform it by elementary row operations to 
the form [I3⋮A-1]. The pivot element at each stage is shown in blue.

Write matrix A augmented by I3.
1
2
1

2
5
1

3
7
1

- -R

T

SSSSSSS  

⋮
⋮
⋮

1
0
0

0
1
0

0
0
1

- - -
V

X

WWWWWWWW

To make a21 = 0, replace row 2 with the 
sum of itself and -2 times row 1. To make 
a31 = 0, replace row 3 by the sum of itself 
and -1 times row 1.

1
1
0
0

2

1

3
1
2- -

R

T

SSSSSSS  

⋮
⋮
⋮

1
2
1

0
1
0

0
0
1

-
-

- -
V

X

WWWWWWWW

To make a12 = 0, replace row 1 with the 
sum of itself and -2 times row 2. To 
make a32 = 0, replace row 3 with the sum 
of itself and row 2.

1
0
0

0
1
0

1
1
1-

-R

T

SSSSSSS  

⋮
⋮
⋮

5
2
3

2
1
1

0
0
1

-
-

- -
V

X

WWWWWWWW

Multiply row 3 by -1.
1

1
0
0

0
1
0

1
1

- -R

T

SSSSSSS  

⋮
⋮
⋮

5
2
3

2
1
1

0
0
1

-
-

- -

V

X

WWWWWWWW

To make a13 = 0, replace row 1 with the 
sum of itself and -1 times row 3. To 
make a23 = 0, replace row 2 with the sum 
of itself and -1 times row 3.

1
0
0

0
1
0

0
0
1

- -R

T

SSSSSSS  

⋮
⋮
⋮

2
5
3

1
2
1

1
1
1

-
-

- -

V

X

WWWWWWWW

The final matrix is of the form [I3 h A-1] that is,

	 A-1 = 
2
5
3

1
2
1

1
1
1

-
-

- -

R

T

SSSSSSS

V

X

WWWWWWW
	 ¢

We now have a practical method for finding the inverse of an invertible ma-
trix, but we do not know whether a given square matrix has an inverse. It can be 
shown that if the preceding procedure is carried out with the matrix [A⋮In] and 
we arrive at a point at which all possible candidates for the next pivot element are 
zero, then the matrix is not invertible; and we may stop our calculations.
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Example 3  Computing Inverses

Find the inverse of

A = 
1
0
3

2
0
6

6
2
9- - -

R

T

SSSSSSS

V

X

WWWWWWW

SOLUTION

We begin with [A⋮I3].
1
0
3

2
0
6

6
2
9- - -

R

T

SSSSSSS
 
⋮
⋮
⋮

1
0
0

0
1
0

0
0
1

V

X

WWWWWWW

To make a31 = 0, replace row 3 by the 
sum of itself and 3 times row 1.

1
0
0

2
0
0

6
2
9

- - -R

T

SSSSSSS  

⋮
⋮
⋮

1
0
3

0
1
0

0
0
1

V

X

WWWWWWW

Note that a22 = a32 = 0 in the last matrix. We cannot perform any elementary  row 
operations upon rows 2 and 3 that will produce a nonzero pivot element for a22. 
We conclude that the matrix A does not have an inverse.	 ¢

 Progress Check

Show that the matrix A is not invertible.

A = 
1
3
5

2
2
6

3
1
5

-

-

R

T

SSSSSSS

V

X

WWWWWWW

8.3a	 Solving Linear Systems
Consider a linear system of n equations in n unknowns.

a11x1 + a12x2 + g + a1nxn = b1

a21x1 + a22x2 + g + a2nxn = b2

	 h	 h	 h	 h	 (7)

an1x1 + an2x2 + g + annxn = bn

As has already been pointed out in Section 8.2 of this chapter, we can write the 
linear system (7) in matrix form as

	 AX = B	 (8)

where

A = 

a
a

a

a
a

a

a
a

an n

n

n

nn

11

21

1

12

22

2

1

2
h h

g

g

g

h

R

T

SSSSSSSSSSS

V

X

WWWWWWWWWWW

    X = 

x
x

xn

1

2
h

R

T

SSSSSSSSSSS

V

X

WWWWWWWWWWW

    B = 

b
b

bn

1

2
h

R

T

SSSSSSSSSSS

V

X

WWWWWWWWWWW
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Suppose now that the coefficient matrix A is invertible so that we can compute 
A-1. Multiplying both sides of (8) by A-1, we have

	 A-1(AX) = A-1B

(A-1A)X = A-1B    Associative law

	 InX = A-1B	 A-1A = In

	 X = A-1B	 InX = X

Thus, we have the following result:

If AX = B is a linear system of n equations in n unknowns and if the coef-
ficient matrix A is invertible, then the system has exactly one solution, 
given by

X = A-1B

Since matrix multiplication is not commutative, be careful to write the solution 
to the system AX = B as X = A-1B and not X = BA-1.

Example 4  Solving a System of Linear Equations Using Inverses

Solve the linear system by finding the inverse of the coefficient matrix.

	 x + 2y + 3z = -3
	 2x + 5y + 7z =	 4
	 x +	 y +	 z =	 5

SOLUTION
The coefficient matrix

	 A = 
1
2
1

2
5
1

3
7
1

R

T

SSSSSSS

V

X

WWWWWWW

is the matrix whose inverse was obtained in Example 2 as

A-1 = 
2
5
3

1
2
1

1
1
1

-
-

- -

R

T

SSSSSSS

V

X

WWWWWWW

Since

	 B = 
3
4
5

-R

T

SSSSSSS

V

X

WWWWWWW

we obtain the solution of the given system as

X = A-1B = 
2
5
3

1
2
1

1
1
1

3
4
5

-
-

- -

-R

T

SSSSSSS

R

T

SSSSSSS

V

X

WWWWWWW

V

X

WWWWWWW
 = 

5
28
18

-

-

R

T

SSSSSSS

V

X

WWWWWWW

Thus, x = -5, y = 28, z = -18.	 ¢
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 Progress Check

Solve the linear system by finding the inverse of the coefficient matrix.
	 x - 2y +	 z =	 1

x + 3y + 2z =   2
	 -x +	 z = -11

Answer
x = 7, y = 1, z = -4

The inverse of the coefficient matrix is especially useful when we need to solve 
a number of linear systems

AX = B1, AX = B2, … , AX = Bk

where the coefficient matrix is the same, and the right-hand side changes.

Example 5  Solving a System of Linear Equations Using Inverses

A steel producer makes two types of steel, regular and special. A ton of regular 
steel requires 2 hours in the open-hearth furnace and 5 hours in the soaking pit; 
a ton of special steel requires 2 hours in the open-hearth furnace and 3 hours in 
the soaking pit. How many tons of each type of steel can be manufactured daily if

a.  the open-hearth furnace is available 8 hours per day and the soaking pit is 
available 15 hours per day?

b.  the open-hearth furnace is available 9 hours per day and the soaking pit is 
available 15 hours per day?

SOLUTION
Let

x = the number of tons of regular steel to be made
y = the number of tons of special steel to be made

Then the total amount of time required in the open-hearth furnace is

2x + 2y

Similarly, the total amount of time required in the soaking pit is

5x + 3y

If we let b1 and b2 denote the number of hours that the open-hearth furnace and 
the soaking pit are available per day, respectively, then we have

2x + 2y = b1

5x + 3y = b2

or
x
y

2
5

2
3

; ;E E = 
b
b

1

2
= G

Then
x
y
; E = 

b
b

2
5

2
3

1
1

2

-

; =E G
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Verify that the inverse of the coefficient matrix is

2
5

2
3

1-

; E  = 
4
3

4
5

2
1

2
1

-

-
> H

a.  If b1 = 8 and b2 = 15, then

x
y
; E = 

4
3

4
5

2
1

2
1

-

-
> H  8

15
; E = 

2
3

2
5> H

That is, 2
3  tons of regular steel and 2

5  tons of special steel can be manufactured 
daily.

b.  If b1 = 9 and b2 = 15, then

x
y
; E = 

4
3

4
5

2
1

2
1

-

-
> H  9

15
; E = 

4
3

4
15> H

That is, 4
3  tons of regular steel and 4

15  tons of special steel can be manufac-
tured daily.	 ¢



8.3 Inverses of Matrices   ¢  457

FOCUS on Coded Messages
Cryptography is the study of methods for encoding and decoding messages. One of the 
very simplest techniques for doing this involves the use of the inverse of a matrix.

Suppose that Leslie and Ronnie are drug enforcement agents in the New York 
City police department and that Leslie has infiltrated a major drug operation. To 
avoid detection, the agents communicate with each other by using coded mes-
sages. First, they agree to attach a different number to every letter of the alphabet. 
For example, they let A be 1, B be 2, and so on, as shown in the accompanying 
table. Suppose that on Thursday, Ronnie wants to send Leslie the message

STRIKE MONDAY

to indicate that the police will raid the drug operation on the following 
Monday. Substituting for each letter, Ronnie sends the message

	 19, 20, 18, 9, 11, 5, 13, 15, 14, 4, 1, 25	 (1)

Unfortunately, this simple code can be easily cracked by analyzing the 
frequency of letters in the English alphabet. A much better method involves 
the use of matrices.

First, Ronnie breaks the message (1) into four 3 × 1 matrices

	 X1 = 
19
20
18

R

T

SSSSSSS

V

X

WWWWWWW

	 X2 = 
9

11
5

R

T

SSSSSSS

V

X

WWWWWWW

	 X3 = 
13
15
14

R

T

SSSSSSS

V

X

WWWWWWW

	 X4 = 
4
1

25

R

T

SSSSSSS

V

X

WWWWWWW

Sometime ago, Ronnie and Leslie had jointly selected an invertible 3 × 3 matrix such as

A = 
1
1
1

1
1
0

2
1
1

R

T

SSSSSSS

V

X

WWWWWWW

which no one else knows. Ronnie now forms the 3 × 1 matrices

	 AX1 = 
75
57
37

R

T

SSSSSSS

V

X

WWWWWWW

	 AX2 = 
30
25
14

R

T

SSSSSSS

V

X

WWWWWWW

	 AX3 = 
56
42
27

R

T

SSSSSSS

V

X

WWWWWWW

	 AX4 = 
55
30
29

R

T

SSSSSSS

V

X

WWWWWWW

and sends the message

	 75, 57, 37, 30, 25, 14, 56, 42, 27, 55, 30, 29	 (2)

To decode the message, Leslie uses the inverse of matrix A,

A-1 = 
1
0
1

1
1
1

1
1
0

-

-
-

R

T

SSSSSSS

V

X

WWWWWWW

and forms

	 A-1 
75
57
37

R

T

SSSSSSS

V

X

WWWWWWW

 = X1	 A-1 
30
25
14

R

T

SSSSSSS

V

X

WWWWWWW

 = X2	 A-1 
56
42
27

R

T

SSSSSSS

V

X

WWWWWWW

 = X3	 A-1 
55
30
29

R

T

SSSSSSS

V

X

WWWWWWW

 = X4

which, of course, is the original message (1) and which can be understood by using the accompany-
ing table.

If Leslie responds with the message

33, 21, 16, 52, 39, 14, 66, 47, 28, 52, 38, 23

what is Ronnie being told?

	A	 B	 C	 D	 E	 F	 G
	1	 1	 1	 1	 1	 1	 1

	1	 2	 3	 4	 5	 6	 7

	H	 I	 J	 K	 L	 M	 N
	1	 1	 1	 1	 1	 1	 1

	8	 9	 10	 11	 12	 13	 14

	O	 P	 Q	 R	 S	 T	 U
	1	 1	 1	 1	 1	 1	 1

15	16	17	18	 19	 20	 21

	V	 W	 X	 Y	 Z
	1	 1	 1	 1	 1

22	23	24	25	 26
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Exercise Set 8.3   
In Exercises 1–4, determine whether the matrix B is 
the inverse of the matrix A.

1.	 A = 
2
1 3

2
1

- -
< F    B = 

1
2

1
4

-; E

2.	 A = 
3
2

1
2-

-; E    B = 2
1

2
1

4
1

4
3> H

3.	 A = 
1
1
0

2
3
2

2
0
1

-
-R

T

SSSSSSS

V

X

WWWWWWW
    B = 

3
1
2

2
1
2

6
2
5- -

-
-

R

T

SSSSSSS

V

X

WWWWWWW

4.	 A = 
1
2
4

0
1
1

2
3
2-

-R

T

SSSSSSS

V

X

WWWWWWW
    B = 

1
2
0

2
4
1

2
1
1

- -
-

-

R

T

SSSSSSS

V

X

WWWWWWW

In Exercises 5–10, find the inverse of the given 
matrix.

5.	
1
2

5
4

-
-

; E	 6. 
2
1

0
2-

-; E

7.	
1
2

1
1

-
-

-; E	 8. 
2
1
1

1
1
1

0
0
1

- - -R

T

SSSSSSS

V

X

WWWWWWW

9.	
1
1
0

2
3
5

3
4
4

-
-

-
-

R

T

SSSSSSS

V

X

WWWWWWW
	 10. 

1
1
1

1
0
2

0
0
2

- - -R

T

SSSSSSS

V

X

WWWWWWW

In Exercises 11–18, find the inverse, if possible.

11.	
1
1

3
4-

-; E	 12. 
6
9

4
6

-
-

-; E

13.	
1
2
1

1
8
2

3
4
0-

- -

R

T

SSSSSSS

V

X

WWWWWWW
	 14. 

8
5
4

7
5
4

1
1
1

-
-

-
-

-R

T

SSSSSSS

V

X

WWWWWWW

15.	
2
0

0
3-

-; E	 16. 
1
0
0

0
4
0

0
0
2

- - -R

T

SSSSSSS

V

X

WWWWWWW

17.	
1
2
0

0
1
1

1
0
1

-- -R

T

SSSSSSS

V

X

WWWWWWW
	 18. 

1
0
1
2

0
1
0
0

3
0
4
6

0
0
0
1

-

-

-

R

T

SSSSSSSSSS

V

X

WWWWWWWWWW

In Exercises 19–24, solve the given linear system by 
finding the inverse of the coefficient matrix.

19.	 2x +	 y = 5	 20.  2x - 3y =	 -5
	 x - 3y = 6	 3x +	 y = -13

21.	 3x +	 y - z = 2	 22.  3x + y -	 z = 10
	 x - 2y	 = 8	 2x - y +	 z = -1
	 3y + z = -8	 -x + y - 2z =	 5

23.	 2x - y + 3z = -11	 24.  2x + 3y - 2z = 13
3x - y +	 z =	 -5	 4x + 2y +	 z =	 3
	 x + y +	 z =	 -1	 y -	 z =	 5

In Exercises 25–34, solve the linear systems in 
Exercises 21–30, Exercise Set 8.1, by finding the in-
verse of the coefficient matrix.

35.	 Solve the linear systems AX = B1 and AX = B2, 
given

A-1 = 
3
2
0

2
1
4

4
0
1

-
-

R

T

SSSSSSS

V

X

WWWWWWW

B1 = 
1
1
5

-

R

T

SSSSSSS

V

X

WWWWWWW
  B2 = 

4
3
2-

R

T

SSSSSSS

V

X

WWWWWWW

36.	 Solve the linear systems AX = B1 and AX = B2, 
given

A-1 = 
1
1
1

0
2
1

1
0
3- -

-R

T

SSSSSSS

V

X

WWWWWWW

B1 = 
2
3
2

-

R

T

SSSSSSS

V

X

WWWWWWW
  B2 = 

4
3
5

-
-

R

T

SSSSSSS

V

X

WWWWWWW

37.	 Show that the matrix
a

d

b

e

c

f
0 0 0

R

T

SSSSSSSS

V

X

WWWWWWWW
is not invertible.

38.	 A trustee decides to invest $500,000 in two 
mortgages, which yield 4% and 8% per year, 
respectively. How should the $500,000 be 
invested in the two mortgages if the total an-
nual interest is to be

a.	 $30,000?    b.  $40,000?    c.  $50,000?

(Hint: Some of these investment objectives can-
not be attained.)

39.	 Many graphing calculators can find the in-
verse of a matrix, just by entering the name of 
the matrix you have stored and then hitting 
the inverse key. The display looks like this:

[A]
                               [[2 0]
                                [5 1]]
[A]–1

                           [[.5     0]
    [–2.5 1]]

Use this method to find the inverse of the co-
efficient matrix for the system of equations in 
Example 5 in Section 8.1.
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40.	 Now use the inverse you found in Exercise 39 
to solve the system, verifying the solution 
given at the end of the example.

41.	 Mathematics in Writing: Explain in your own 
words how the inverse of a matrix is used 
to solve a system of equations. How is this 
process similar to the method for solving a 
linear equation in one unknown, discussed in 
Section 2.1? How is it different?
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8.4	 Determinants
In this section, we will define a determinant and develop manipulative skills for 
evaluating determinants. We will then show that determinants have important 
applications and can be used to solve linear systems.

Associated with every square matrix A is a number called the determinant of A, 
denoted by |A|. If A is 1 × 1, that is, if A = [a11], then we define |A| = a11. If A is the 
2 × 2 matrix

A = 
a
a

a
a

11

21

12

22
< F

then |A| is said to be a determinant of second order and is defined by the rule

|A| = 
a
a

a
a

11

21

12

22
< F = a11a22 - a21a12

Example 1  Determinant of Second Order

Compute the real number represented by

4
3

5
1

-
-

SOLUTION
We apply the rule for a determinant of second order.

	
4
3

5
1

-
-

 = (4)(-1) - (3)(-5) = 11	 ¢

 Progress Check

Compute the real number represented by

a. 
6
1

2
2

-
- -

	 b. 
4 2
2
1

4
1

- -

Answers
a.  14	 b.  0
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8.4a	 Minors and Cofactors
Consider the 3 × 3 matrix

A = 
a
a
a

a
a
a

a
a
a

11

21

31

12

22

32

13

23

33

R

T

SSSSSSSSS

V

X

WWWWWWWWW

The minor of an element aij is the determinant of the matrix remaining after delet-
ing the row and column in which the element aij appears. Given the matrix

	
4
1
3

0
6
2

2
7
5-

-
-R

T

SSSSSSS

V

X

WWWWWWW

the minor of the element in row 2, column 3 is

4
1
3

0
6
2

2
7
5-

-
-

 = 
4
3

0
2-

 = 8 - 0 = 8

The cofactor of the element aij is the minor of the element aij multiplied by 
(-1)i + j. Since (-1)i + j is +1 if i + j is even and -1 if i + j is odd, we see that the cofac-
tor is the minor with a sign attached. The cofactor attaches the sign to the minor 
according to this pattern:

h h h h

g

g

g

g

h

+
-
+
-

-
+
-
+

+
-
+
-

-
+
-
+

R

T

SSSSSSSSSSSSSS

V

X

WWWWWWWWWWWWWW

Example 2  Determining Cofactors

Find the cofactor of each element in the first row of the matrix.
2
4
7

0
5
8

12
3
6

-
-

-

R

T

SSSSSSS

V

X

WWWWWWW

SOLUTION
The cofactors are

(-1)1 + 1 
2
4
7

0
5
8

12
3
6

-
-

-
 = 

5
8

3
6-

 = -30 - 24 = -54

	 (-1)1 + 2 
2
4
7

0
5
8

12
3
6

-
-

-
 = 

4
7

3
6-

-
-

 = -(24 - 21) = -3

	 (-1)1 + 3 
2
4
7

0
5
8

12
3
6

-
-

-
 = 

4
7

5
8

-
 = -32 - 35 = -67	 ¢



462  ¢  Chapter 8  Matrices, Linear Systems, and Determinants

 Progress Check

Find the cofactor of each entry in the second column of the matrix.

16
5
3

9
2
4

3
0
1

-
-

-

-

R

T

SSSSSSS

V

X

WWWWWWW

Answers
cofactor of -9 is -5; cofactor of 2 is -7; cofactor of 4 is -15

The cofactor is the key to the process of evaluating determinants of any order. 

Expansion by Cofactors
To evaluate a determinant, form the sum of the products obtained by mul-
tiplying each entry of any row or any column by its cofactor. This process 
is called expansion by cofactors.

Consider the matrix

A = 
4
3

5
1

-
-

; E
and choose the second column. The cofactor of

a12 = -5    is    (-1)1 + 2 
4
3

5
1

-
-

; E = -3

and the cofactor of

a22 = -1    is    (-1)2 + 2 
4
3

5
1

-
-

; E = 4

Therefore

|A| = (-5)(-3) + (-1)(4) = 15 - 4 = 11

Note that the above is an alternative method for Example 1. In fact, verify the 
formula given for a determinant of order 2 at the beginning of this section using 
the method of expansion by cofactors, using any row or any column.

Let us illustrate the process for a 3 × 3 matrix.
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Example 3  Expansion by Cofactors

Evaluate the determinant of the matrix
2
6
4

7
6

10

2
0
3

-
-

-

R

T

SSSSSSS

V

X

WWWWWWW

using the method of expansion by cofactors.

SOLUTION

Step 1. � Choose a row or column about which to expand. 
(In general, a row or column containing zeros sim-
plifies the work.

Step 1.  We expand about column 3.

Step 2. � Expand about the cofactors of the chosen row or 
column by multiplying each entry of the row or 
column by its cofactor. Repeat the procedure until 
all determinants are of order 2.

Step 2.  The expansion about column 3 is

	 (2)(-1)1 + 3 
6
4

6
10
--

	 +(0)(-1)2 + 3 
2
4

7
10

-

+(-3)(-1)3 + 3 
2
6

7
6

-
-

Step 3. � Evaluate the cofactors and form the sum indicated 
in Step 2.

Step 3. � Using the rule for evaluating a determinant of order 
2, we have

�(2)(1)[(6)(10) - (4)(-6)] + 0 +(-3)(1)[(-2)(-6) - (6)(7)]

�	 = 2(60 + 24) - 3(12 - 42) 
�	 = 258

Observe that it was unnecessary for us to calculate the cofactor corresponding to 
the 0 element in column 3. We only did it here to reinforce the method of finding 
cofactors.	 ¢

Note that expansion by cofactors of any row or any column produces the same 
result. This property of determinants can be used to simplify the arithmetic. The 
best choice of a row or column about which to expand is generally the one that 
has the most zero entries. If an entry is zero, the entry times its cofactor is also 
zero, so we do not have to evaluate that cofactor.

 Progress Check

Find the determinant of the matrix in Example 3 by expanding about the 
second row.

Answer
258
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Example 4  Expansion by Cofactors

Verify the rule for evaluating the determinant of the matrix of order 3.

a
a
a

a
a
a

a
a
a

11

21

31

12

22

32

13

23

33

 = a11a22a33 - a11a32a23 - a12a21a33 + a12a31a23 + a13a21a32 - a13a31a22

SOLUTION
Expanding about the first row, we have

	
a
a
a

a
a
a

a
a
a

11

21

31

12

22

32

13

23

33

 = a11 
a
a

a
a

22

32

23

33
 - a12 

a
a

a
a

21

31

23

33
 + a13 

a
a

a
a

21

31

22

32

	 = a11(a22a33 - a32a23) - a12(a21a33 - a31a23) + a13(a21a32 - a31a22)

	 = a11a22a33 - a11a32a23 - a12a21a33 + a12a31a23 + a13a21a32 - a13a31a22

(Verify this answer using any other column or row.)	 ¢

 Progress Check

Show that the determinant of the matrix is equal to zero.

a
a
d

b
b
e

c
c
f

The process of expanding by cofactors works for determinants of any order. 
If we apply the method to a determinant of order 4, we produce determinants of 
order 3; applying the method again results in determinants of order 2.

Example 5  Expansion by Cofactors

Evaluate the determinant of the matrix.

3
1
0
0

5
2
4
2

0
3
6
1

1
3
0
2

-

-
-

-
-

SOLUTION
Expanding about the cofactors of the first column, we have

	

5
2
4
2

0
3
6
1

1
3
0
2

3
1
0
0 -

-

-
-

-

 = -3 
2

2

3

1

3

2
4 6 0

-

-
-  - 1 

5
4
2

0
6
1

1
0
2-

-
-

	 = 
3
1

3
2

2
2

3
2 1

4
2

6
1 2

5
4

0
63 4 6 1

-
-

-
-

-
-

+
-

- - - -= =G G

	 = -3[(-4)(9) - 6(-2)] - 1[(-1)(-8) + 2(-30)]

	 = -3[-36 + 12] - 1[8 - 60]

	 = -3(-24) - 1(-52) = 124	 ¢
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 Progress Check

Evaluate the determinant of the matrix.

0
3
0
1

1
0
5
0

0
4
0
1

2
0
3
0

-

-

Answer
7
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Exercise Set 8.4   
In Exercises 1–6, evaluate the determinant of the 
given matrix.

1.	
2
4

3
5

--
	 2. 

3
1

4
2-

-

3.	
4
0

1
2

- -
	 4. 

2
3

2
3

- -

5.	
0
1

0
3

- -
	 6. 

4
2

1
3

-
-

-

In Exercises 7–10, let

A = 
3
4
5

1
1
2

2
3
0

-

-
-
-

R

T

SSSSSSS

V

X

WWWWWWW

7.	 Compute the minor of each of the following 
elements:
a.  a11	 b.  a23	 c.  a31	 d.  a33

8.	 Compute the minor of each of the following 
elements:
a.  a12	 b.  a22	 c.  a23	 d.  a32

9.	 Compute the cofactor of each of the following 
elements:
a.  a11	 b.  a23	 c.  a31	 d.  a33

10.	 	Compute the cofactor of each of the following 
elements:
a.  a12	 b.  a22	 c.  a23	 d.  a32

In Exercises 11–20, evaluate the determinant of the 
given matrix.

11.	
4
5
2

2
2
0

5
0
4

-- -
	 12. 

4
0
0

1
2
0

2
3
4-

- -

13.	
1
3
6

2
4
5

0
1
2

- - -
	 14. 

1
0
2

3
7
1

2
7
3

- - -

15.	

0
0
2
3

1
1
2
3

0
2
2
1

3
1
3
0

-

-

- - -

	 16. 

0
1
0
3

0
1
2
1

2
2
2
3

3
3
1
0

- -
- -

17.	

2
2
1
0

1
0
1
1

3
3
2
1

1
5
2
3

-
-

-
-

-

	 18. 

2
1
3
1

2
0
3
5

1
1
2
2

0
1
1
3

-
-

- -

19.	

0
0
5
3

0
1
1
3

2
2
3
1

4
1
3
0

- - - -

	 20. 

3
2
2
1

2
3
2
5

0
1
4
2

1
0
4
3

-
- -

-

--

21.	 Finding the determinants by using your 
graphing calculator’s MATRIX menu, investi-
gate what happens to the determinant of the 
matrix in Exercise 17 if you change the matrix 
in the following ways:

a.	 Interchange row 2 and row 3.

b.	 Interchange row 2 and row 3, then the new 
row 3 and row 4.

What can you conclude from these results?



8.5 Properties of Determinants  ¢  467

8.5	 Properties of Determinants
In general, the computations required to evaluate the determinant of a matrix can 
get rather time-consuming as the dimension of the matrix becomes quite large. 
Therefore, it may be worthwhile to consider alternative methods that may reduce 
the number of operations involved. We have already observed that if an element 
of a matrix equals zero, then we need not evaluate the corresponding cofactor 
since the product of the two is also zero. Thus, we will examine methods to enable 
us to obtain more zero entries in a matrix whose determinant is equal to that of 
the original matrix under consideration.

In Section 8.1, we presented the elementary row operations:

1.	 Interchange any two rows.
2.	 Multiply each element of any row by a constant k ! 0.
3.	 Replace each element of a given row by the sum of itself plus k times the corre

sponding element of any other row.

We have observed that these operations are important in transforming one ma-
trix into another matrix. We wish to explore what effect these operations have on 
the determinant of the original matrix compared with the determinant of the trans-
formed matrix. We also wish to examine the determinant of some special matrices:

1.	 a matrix with a row of zeros
2.	 a matrix where two rows are identical
3.	 a matrix where the rows and columns are interchanged, called the transpose of 

the original matrix

Let

	 A = 
5
4
2

0
6
1

1
0
2-

-
-R

T

SSSSSSS

V

X

WWWWWWW

Expanding about the cofactors of the first row, we find that

	 |A| = -52

Interchanging rows 1 and 2 of A, we have

4
5
2

6
0
1

0
1
2-

-
-  = 52

Multiplying the second row of A by 2
1 , we obtain

	
5
2
2

0
3
1

1
0
2-

-
-

 = -26

Adding 2 times row 1 to row 3, we find that

	
5
4
8

0
6
1

1
0
0

-
--

 = -52

If we replace the second row of A with 0 elements, we have

	
5
0
2

0
0
1

1
0
2-

--
 = 0

If we replace row 3 of A with row 2, we obtain

	
5
4
4

0
6
6

1
0
0

-
-

--
 = 0
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Taking the transpose of A, where we interchange the rows and columns of A, or 
equivalently, replacing aij with aji we find that

5
0
1

4
6
0

2
1
2-

-
-

 = -52

(Verify the calculations of the previous determinants, expanding by any row or 
any column.) These examples suggest the properties of determinants shown in 
Table 8-2.

Note that the determinant of a matrix expanded by cofactors yields the same 
answer, whether the expansion uses a particular row or a particular column. This 
fact allows us to replace the word “row” by the word “column” and obtain the 
same property. If a row or column has all zero entries, then expansion by cofactors 
about this zero row or column produces a determinant of 0. If two rows or two 
columns are identical, then we may add -1 times one to the other to produce a 
row or column of zeros, respectively.

Table 8-2  Properties of Determinants

1.	 Interchange any two rows of A or interchange any two columns of A, and call the new 
matrix B. Then

� |B| = -|A|

2.	 Multiply each element of any row of A or any column of A by a constant k, and call the 
new matrix B. Then

|B| = k|A|

3.	 Add k times one row to any other row or k times one column to any other column and call 
the new matrix B. Then

|B| = |A|

4.	 If A has a row or column with 0 elements or if A has two identical rows or two identical 
columns then

|A| = 0

5.	 Take the transpose of A, where we replace aij with aji, so that the rows become columns and 
the columns become rows. If we call the new matrix B, then

|B| = |A|

Example 1  Using Properties of Determinants

Evaluate the determinant.
0
4
1
1

2
1
1
2

3
8
2
3

0
15
0
6-

-
- - -

SOLUTION

To make a21 = 0, replace row 2 by the sum of itself 
and (-4) times row 3. To make a41 = 0, replace row 
4 by the sum of itself and row 3.

0
0
1
0

2
5
1
3

3
0
2
1

0
15
0
6

-
- - -
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Now expand the determinant by the cofactors of 
the first column, obtaining 	

2
5
3

3
0
1

0
15
6- - -

We factor out 5 from the second row to obtain 	 5
2
1
3

3
0
1

0
3
6- - -

To make a23 = 0, replace column 3 by the sum of 
itself and (-3) time column 1.

	 5
2
1
3

3
0
1

6
0
3- -

-

Expand this determinant by the cofactors of the 
second row, obtaining 	 5

3
1

6
3-

-
-

Evaluating this last 2 × 2 determinant, we have 	 -5(9 - 6) = -15

	 ¢

 Progress Check

Evaluate the determinant.

4
2
2
4

0
4
1
1

0
5
0
2

3
8
2
3

-
- - - -

Answer
-10
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Exercise Set 8.5   
In Exercises 1–6, evaluate the determinant of the 
given matrix.

1.	
2
3
1

2
8
1

4
1
2

	 2. 
0
2
4

1
5
2

3
1
2

-
-

3.	

3
1
0
4

2
3
0
1

1
1
2
3

0
0
2
3

- - -
-

	 4. 

1
3
0
0

2
2
4
3

4
3
2
1

0
0
5
4

-
-

-

-

5.	

2
0
0
0

3
4
1
1

2
1
2
3

4
9
0
1

-
-

-

-

-

	 6. 

1
0
2
0

1
1
3
2

0
4
1
0

1
1
4
2

-
- -

-

7.	 Show that

a b
c

a b
d

1 1 2 2+ +
 = 

a
c

a
d

1 2  + 
b
c

b
d

1 2

8.	 Prove that if a row or column of a square 
matrix consists entirely of zeros, the determi-
nant of the matrix is zero. (Hint: Expand by 
cofactors.)

9.	 Prove that if matrix B is obtained by multiply-
ing each element of a row of a square matrix A 
by a constant k, then |B| = k|A|.

10.	 Show that
ka
a

ka
a

11

21

12

22
 = 

a
ka

a
ka

11

21

12

22
 = k

a
a

a
a

11

21

12

22

11.	 Prove that if A is an n × n matrix and B = kA, 
where k is a constant, then |B| = kn|A|.

12.	 Prove that if matrix B is obtained from a 
square matrix A by interchanging the rows 
and columns of A, then |B| = |A|.
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8.6	 Cramer’s Rule
Determinants provide a convenient way of expressing formulas in many areas of 
mathematics, particularly in geometry. One of the better known uses of determi-
nants is for solving systems of linear equations, a procedure known as Cramer’s Rule.

In an earlier section, we solved systems of linear equations by the method of 
elimination. We now apply this method to the general system of two equations 
in two unknowns.

	 a11x + a12y = b1	 (1)

	 a21x + a22y = b2	 (2)

Let us multiply Equation (1) by a22, Equation (2) by -a12 and add. This eliminates y.

	 a11a22x + a12a22y = b1a22

	 -a21a12x - a12a22y = -b2a12

a11a22x - a21a12x = b1a22 - b2a12

Thus,

x(a11a22 - a21a12) = b1a22 - b2a12

or

x = a a a a
b a b a

11 22 21 12

1 22 2 12
-
-

Similarly, multiplying Equation (1) by a21, Equation (2) by -a11 and adding, we 
can eliminate x and solve for y.

y = a a a a
b a b a

11 22 21 12

2 11 1 21
-
-

The denominators in the expression for x and y are identical and can be written as 
the determinant of the matrix

	 |A| = 
a
a

a
a

11

21

12

22

If we apply this same idea to the numerators, we have

x = 
A

b
b

a
a

1

2

12

22
,    y = 

A

a
a

b
b

11

21

1

2
,    |A| ! 0

This formula is called Cramer’s Rule and is a means of expressing the solution of 
a system of linear equations in determinant form. Let A1 denote the matrix ob-
tained by replacing the first column of A with the column of the right-hand sides 
of the equations. Furthermore, let A2 denote the matrix obtained by replacing the 
second column of A again with the column of the right-hand sides.

We may summarize Cramer’s Rule as follows:

Cramer’s Rule for Two Unknowns
The solution to

a11x + a12y = b1

a21x + a22y = b2

is given by

x = 
A
A1 ,  y = 

A
A2 ,  |A| ! 0
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The following example outlines the steps for using Cramer’s Rule.

Example 1  Cramer’s Rule

Solve by Cramer’s Rule.
	 3x -	 y =	 9

x + 2y = -4

SOLUTION

Step 1. � Compute |A|, the determinant of the coeffi-
cient matrix A. If A = 0, Cramer’s Rule cannot 
be used. Use Gaussian Elimination or Gauss-
Jordan Elimination.

Step 1.  |A| = 
3
1

1
2

-
 = 7

Step 2. � Compute |A1|, the determinant of the ma-
trix obtained from A by replacing the col-
umn of coefficients of x, the first column 
unknown, with the column of right-hand 
sides of the equations.

x = 
A
A1

Step 2.  x = 
A
A1  = 

A

9
4

1
2-

-

	 = 7
18 4-  = 7

14  = 2

Step 3. � Compute |A2|, the determinant of the ma-
trix obtained from A by replacing the col-
umn of coefficients of y, the second column 
unknown, with the column of right-hand 
sides of the equations.

y = 
A
A2

Step 3.  y = 
A
A2  = 

A

3
1

9
4-

	 = 7
12 9- -  = 7

21-  = -3

Thus, x = 2, y = -3

		  ¢

 Progress Check

Solve by Cramer’s Rule.
2x + 3y = -4
3x + 4y = -7

Answers
x = -5, y = 2
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The steps outlined in Example 1 can be applied to solve any system of linear 
equations in which the number of equations is the same as the number of un-
knowns and in which |A| ! 0. For example, assume A is 3 × 3. If A3 is the matrix 
obtained by replacing the third column of A with the column of right-hand sides, 
then we have

Cramer’s Rule for Three Unknowns
The solution to

a11x + a12y + a13z = b1

a21x + a22y + a23z  = b2

a31x + a32y + a33z  = b3

is given by

x = 
A
A1 ,  y = 

A
A2 ,  z = 

A

A3 ,  |A| ! 0

Example 2  Cramer’s Rule

Solve by Cramer’s Rule.

	 3x + 2z = -2
	 2x -	 y =	 0
	 2y + 6z = -1

SOLUTION
We compute the determinant of the matrix of coefficients.

	 |A| = 
3
2
0

0
1
2

2
0
6

-
- -

 = -10

Then

	 x = 
A
A1  = 

A

2
0
1

0
1
2

2
0
6

-

-
-

-

 = 10
10

-  = -1

	 y = 
A
A2  = 

A

3
2
0

2
0
1

2
0
6

-

-

- -

 = 10
20

-  = -2

	 z = 
A

A3  = 
A

3
2
0

0
1

2
0
12

-
-

-

-

 = 10
5

-
-  = 2

1 	 ¢
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 Progress Check

Solve by Cramer’s Rule.
	 3x	 - z =	 1
	 -6x + 2y	 = -5
	 -4y + 3z =	 5

Answers

x = 3
2 , y = 2

1- , z = 1

a.	 Each equation of the linear system must be written in the form

ax + by + cz = k

before using Cramer’s Rule.

b.	If |A| = 0, Cramer’s Rule cannot be used.
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Exercise Set 8.6   
In Exercises 1–8, solve the given linear system by 
using Cramer’s Rule.

1.	 2x +	 y +	 z = -1	 2. 	  x - y +	 z = -5
	 2x -	 y + 2z =	 2	 3x + y + 2z = -5
	 x + 2y +	 z = -4	 2x - y -	 z = -2

3.	 2x +	 y -	 z =	 9	 4.  2x +	 y -	 z = -2
	 x - 2y + 2z = -3	 -2x - 2y + 3z =	 2
	 3x + 3y + 4z = 11	 3x +	 y -	 z = -4

5.	 -x -	 y + 2z =	 7	 6.  4x +	 y -	 z = -1
	 x + 2y - 2z = -7	 x -	 y + 2z =	 3 
	 2x -	 y +   z = -4	 -x + 2y -	 z =	 0

7.	 	 x +	 y -	 z + 2w =	 0
	 2x +	 y	 -	 w = -2
	 3x	 + 2z	 = -3
	 -x + 2y	 + 3w =	 1

8.	 2x +	 y	 - 3w = -7
	 3x	 + 2z +	 w = -1
	 -x + 2y	 + 3w =	 0
	 -2x - 3y + 2z -	 w =	 8

9.	 Mathematics in Writing: Give a step-by-step 
method for solving systems of equations by 
Cramer’s Rule with your graphing calculator.

10.	 Redo Exercises 7 and 8 using the method you 
outlined in Exercise 9.
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Chapter Summary
Key Terms, Concepts, and Symbols

A-1	 451
|A|	 460
[aij]	 433
additive inverse	 448
augmented matrix	 434
coefficient matrix	 434
cofactor	 461
column matrix	 432
Cramer’s Rule for three 

unknowns	 473
Cramer’s Rule for two 

unknowns	 471
determinant	 460

dimension	 432
elementary row operations	 434
elements of a matrix	 432
entries of a matrix	 432
equality of matrices	 441
expansion by cofactors	 462
Gauss-Jordan Elimination	 437
Gaussian Elimination 	 435
identity matrix	 448, 449
inverse	 449
invertible matrix	 449
matrix	 432
matrix addition	 441

matrix multiplication	 444
matrix subtraction	 443
minor	 461
nonsingular matrix	 449
order	 432
pivot element	 435
pivot row	 435
row matrix	 432
scalar	 442
scalar multiplication	 442
square matrix of order n	 432
transpose of a matrix	 467
zero matrix	 448

Key Ideas for Review

Topic Page Key Idea

Matrices 432 A matrix is a rectangular array of numbers.

Addition and 
Subtraction

441
443

The sum and difference of two matrices A and B can be formed only if A and 
B are of the same dimension.

Multiplication 443 The product AB can be formed only if the number of columns of A is the 
same as the number of rows of B.

Systems of Linear 
Equations and Matrix 
Notation

446 A linear system can be written in the form AX = B, where A is the coefficient 
matrix, X is a column matrix of the unknowns and B is the column matrix 
of the right-hand sides. The elementary row operations are an abstraction 
of those operations that produce equivalent systems of equations.

Gaussian and Gauss-
Jordan Elimination

437 Gaussian Elimination and Gauss-Jordan Elimination both involve the use 
of elementary row operations on the augmented matrix corresponding to 
a linear system. In the case of a system of three equations with three un-
knowns and a unique solution, the final matrices are of this form:

* *
*

*
*
*

0
0 0

R

T

SSSSSSS  

⋮
⋮
⋮

*
*
*

V

X

WWWWWWW    

1
0
0

0
1
0

0
0
1

R

T

SSSSSSS  

⋮
⋮
⋮

c
c
c

1

2

3

V

X

WWWWWWW

	 Gaussian Elimination	 Gauss-Jordan Elimination

If Gaussian Elimination is used, back-substitution is then performed with 
the final matrix to obtain the solution. If Gauss-Jordan Elimination is used, 
the solution can be read from the final matrix.

Inverse of a Matrix 449 The n × n matrix B is said to be the inverse of the n × n matrix A if AB = In and 
BA = In. We denote the inverse of A by A-1. The inverse can be computed by 
using elementary row operations to transform the matrix [A⋮In] to the form 
[In⋮B], in which case B = A-1.

Solving Linear Systems 453 If the linear system AX = B has a unique solution, then X = A-1B.

continues
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Topic Page Key Idea

Determinants 460 Associated with every square matrix is a number called a determinant. The 
determinant of the 1 × 1 matrix A = [a] is |A| = a. The rule for evaluating a 
determinant of order 2 is

a
c

b
d  = ad - bc

Evaluation by 
Cofactors

461 For determinants of order greater than 2, the method of expansion by cofac-
tors may be used to reduce the problem to that of evaluating determinants 
of order 2. When expanding by cofactors, choosing the row or column that 
contains the most zeros usually simplifies the arithmetic.

Properties 467 Some useful properties of determinants follow:
1.	 Interchange any two rows of A or interchange any two columns of A, 

and call the new matrix B. Then 

|B| = -|A|

2.	 Multiply each element of any row of A or any column of A by a con-
stant k, and call the new matrix B. Then

|B| = k|A|

3.	 Add k times one row to any other row or k times one column to any 
other column and call the new matrix B. Then

|B| = |A|

4.	 If A has a row or column with 0 elements or if A has two identical rows 
or two identical columns then 

|A| = 0

5.	 Take the transpose of A, where we replace aij with aji, so that the rows 
become columns and the columns become rows. If we call the new 
matrix B, then 

|B| = |A|

Cramer’s Rule 471 Cramer’s Rule provides a means for solving a linear system by expressing 
the value of each unknown as a quotient of determinants.

Review Exercises

Exercises 1–4 refer to the matrix

A = 
1
2
4

4
0
6

2
3
9

0
1
1

8
5
2

-

-
- -

-

R

T

SSSSSSS

V

X

WWWWWWW

1.	 Determine the dimension of the matrix A.

2.	 Find a24.

3.	 Find a31.

4.	 Find a15.

Exercises 5 and 6 refer to the linear system.
3x - 7y = 14

	 x + 4y =	 6
5.	 Write the coefficient matrix of the linear 

system.

6.	 Write the augmented matrix of the linear 
system.

In Exercises 7 and 8, write a linear system corre-
sponding to the augmented matrix.

7.	
4
2

1
5

-;  
⋮
⋮

3
0
E	 8. 

2
6
3

4
9
2

5
4
1

-
-

-

R

T

SSSSSSS
 
⋮
⋮
⋮

0
0
0

V

X

WWWWWWW
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In Exercises 9–12, use back-substitution to solve 
the linear system corresponding to the given aug-
mented matrix.

9.	
1
0

2
1

-;  
⋮
⋮

7
4-
E	 10. 

1
0

2
1

<  
⋮
⋮ 5

2
21
F

11.	
1
0
0

4
1
0

2
2
1

-
-

R

T

SSSSSSS
 
⋮
⋮
⋮

18
5
1

-

-

V

X

WWWWWWW
	 12. 

1
0
0

2
1
0

2
3
1

-R

T

SSSSSSS
 
⋮
⋮
⋮

9
8
3

-
-
-

V

X

WWWWWWW

In Exercises 13–16, use matrix methods to solve the 
given linear system.

13.	 	 x +	 y =	 2	 14.  3x -	 y = -17
	 2x - 4y = -5	 2x + 3y =	 -4

15.	 	 x + 3y + 2z =	 0
	 -2x	 + 3z = -12
	 2x - 6y -	 z =	 6

16.	 2x -	 y - 2z = 3
	 -2x + 3y +	 z = 3
	 2y -	 z = 6

In Exercises 17 and 18, solve for x.

17.	
x

5
3

1
2
-; E = 

5
3

1
6

-
-

; E	 18. 
x

x6
4 2

2

-
< F = 

6
12

9
2- -

; E

Exercises 19–28 refer to the following matrices:

A = 
2
3

1
2

--; E	 B = 
1
4

5
3

-
-

; E

C = 
1
0
2

0
4
2

-

-

R

T

SSSSSSS

V

X

WWWWWWW
	 D = 

1
1

3
0

4
6- -

; E

If possible, find the following:

19.	 A + B	 20.  B - A

21.	 A + C	 22.  5D

23.	 CD	 24.  DC

25.	 BC	 26.  CB

27.	 A + 2B	 28.  -AB

In Exercises 29 and 30, find the inverse of the given 
matrix.

29.	
2
1

3
4

-; E	 30. 
1
5
4

1
2
2

4
0
1

- -
-

-

R

T

SSSSSSS

V

X

WWWWWWW

In Exercises 31 and 32, solve the given system by 
finding the inverse of the coefficient matrix.

31.	 2x - y = 1	 32.	 x + 2y - 2z = -4
	 x + y = 5	 3x -	 y	 = -2
	 y + 4z =	-1

In Exercises 33–38, evaluate the determinant of the 
given matrix.

33.	
3
4

1
2-

-
	 34. 

1
0

2
6

- -

35.	
2
6

1
3

-
-

-
	 36. 

1
2
0

0
3
4

1
5
0

-
-

37.	
1
0
2

1
5
3

2
4
8

-
	 38. 

1
0
0

2
3
0

1
4
1

-

-

In Exercises 39–44, use Cramer’s Rule to solve the 
given linear system.

39.	 2x -	 y = -3	 40.  3x -	 y =	 7
	 -2x + 3y =	11	 2x + 5y = -18

41.	 	 x + 2y =	 2	 42. 	  2x + 3y -	 z = -3
	 2x - 7y = 48	 -3x	 + 4z =	 16
	 2y + 5z =	 9

43.	 3x	 +	 z =	 0	 44.  2x + 3y +	 z = -5
	 x +	 y +	 z =	 0	 2y + 2z = -3
	 - 3y + 2z = -4	 4x +	 y - 2z = -2

Review Test

Exercises 1 and 2 refer to the matrix

	 A = 
1
2
0

2
4
7

-
-

R

T

SSSSSSS

V

X

WWWWWWW

1.	 Find the dimension of the matrix A.

2.	 Find a31.

3.	 Write the augmented matrix of the linear 
system

	 -7x	 + 6z =	 3
	 2y -	 z = 10
	 x -	 y +	 z =	 5

4.	 Write a linear system corresponding to the 
augmented matrix

5
3

2
4

-
-

;  
⋮
⋮

4
4
E

5.	 Use back-substitution to solve the linear sys-
tem corresponding to the augmented matrix

1
0

1
1

<  
⋮
⋮

0

2
1 F

6.	 Solve the linear system
	 -x + 2y =	 2

x2
1  + 2y = -7

by applying Gaussian Elimination to the aug-
mented matrix.

7.	 Solve the linear system
	 2x -	 y + 3z = 2
	 x + 2y -	 z = 1
	 -x +	 y + 4z = 2

by applying Gauss-Jordan Elimination to the 
augmented matrix.
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8.	 Solve for x.
x2 1
1

0
3

-
-

; E = 
5
1

0
3-

; E
Exercises 9–12 refer to the matrices

A = 
4
6

0
2

3
3

-
-

; E	 B = 
1
3

-
-
; E

C = 
4
2
3

2
0
1

-
-

R

T

SSSSSSS

V

X

WWWWWWW
	 D = 

1
0
4

6
2
1

-

-

R

T

SSSSSSS

V

X

WWWWWWW

If possible, find the following:

9.	 C - 2D	 10.  AC

11.	 CB	 12.  BA

13.	 Find the inverse of the matrix
1
2
1

0
1
3

4
1
2

-

-
-

R

T

SSSSSSS

V

X

WWWWWWW

14.	 Solve the given linear system by finding the 
inverse of the coefficient matrix.

3x - 2y = -8
2x + 3y = -1

In Exercises 15 and 16, evaluate the determinant of 
the given matrix.

15.	
6
2

2
1

- -
	 16. 

0
2
1

1
2
4

2
3
5

-
-

17.	 Use Cramer’s Rule to solve the linear system

	 x + 2y = -2
	 -2x - 3y =	 1

Writing Exercises

1.	 Discuss how to solve a linear system in three 
unknowns if Cramer’s Rule fails to hold.

2.	 Compare and contrast the additive properties 
of matrices with the additive properties of the 
real numbers.

3.	 Compare and contrast the multiplicative prop-
erties of square matrices with the multiplica-
tive properties of the real numbers.

4.	 Compare and contrast Gauss-Jordan Elimina-
tion and Gaussian Elimination.

Chapter 8 Project
Manipulating images using computer technology is a major component of special effects in some of today’s 
most popular films. The mathematics of matrices can help us see how images can be altered by increasing 
the contrast or adding two images together. One interesting use of the latter technique is a process called 
blue-screen chromakey, by which a character may appear to be in an environment which was actually pho-
tographed separately.

For this project, do the following exercises from this chapter: Section 8.1, 51, and Section 8.2, 37–39.
Now make up your own image matrix. Make it 20 pixels by 15 pixels, and let each pixel have 6 bits (this 

means each entry will be an integer between 0 and 63). Repeat the exercises using this matrix. Use your calcu-
lator to help you. If increasing the contrast results in an entry greater than 63, what should you do?






